Naamdr. E Scholten

OmschrijvingUniversitair hoofddocent
OrganisatieDepartement Agrotechnologie en Voedingswetenschappen
OrganisatieeenheidPhysics and Physical Chemistry of Foods
Telefoon+31 317 482 288
Telefoon secretariaat+31 317 485 515
Telefoon 2
Notitie voor telefonist
Notitie door telefonist
BezoekadresBornse Weilanden 9
PostadresPostbus 17
Reguliere werkdagen
Ma Di Wo Do Vr
  • Editorial Board Food Hydrocolloids - Elsevier
    dec 2021 - dec 2024

  • Editorial Board Member Food Structure - Elsevier
    jun 2021 - Nu

  • Editorial Board Member Current Research in Food Science - Elsevier
    mei 2021 - Nu

  • Associate Editor Food and Function - Royal Society of Chemistry
    jun 2020 - jun 2023


Curriculum Vitae

  • 2008 Post-doctoral Associate Chemical Engineering, MIT, Cambridge, USA
  • 2006 PhD Food Physics, Wageningen University
  • 2001 MSc Physical and Colloid Chemistry, Utrecht University
  • 1997 BSc Organic Chemistry, University College, Etten-Leur

Latest Articles (2020)

Arito-Merino, van Valenberg, H., Gilbert, E., Scholten, E. Time-resolved quantitative phase analysis of complex fats during crystallization, Crystal Growth & Design, 2020

van Eck, A., Franks, E., Vinyard, C.J., Galindo-Cuspinera, V., Fogliano, V., Stieger, M, Scholten, E. Sauce it up: Influence of condiment properties on oral processing behavior, bolus formation and sensory perception of solid foods, Food and Function, 2020.

van Eck, A., van Stratum, A, Achlada, D., Goldschmidt, Scholten, E., Fogliano, V., Stieger, M., Bolhuis, D. Cracker shape modifies ad libitum snack intake of crackers with cheese dip, British Journal of Nutrition, 2020

Fuhrmann, P.L., Sala, G., Stieger, M., Scholten, E. Influence of clustering of protein-stabilised oil droplets with proanthocyanidins on mechanical, tribological and sensory properties of o/w emulsions and emulsion-filled gels. Food Hydrocolloids, 2020, 105, 105856. 

Rudge, R.E.D., van de Sande, J., Dijksman, J., Scholten, E. Uncovering friction dynamics using hydrogel particles as soft ball bearings, Soft Matter 2020,  

Aguayo-Mendoza, M., Santagiuliana, M., Ong, X., Piqueras-Fiszman, B., Scholten, E., Stieger, M. How addition of peach gel particles to yogurt affects oral behavior, sensory perception and liking of consumers differing in age, Food Research International 2020, 109213

Santagiuliana, M., Broers, L., Sampedro Marigómez, I., Stieger, M., Piqueras-Fiszman, B., Scholten, E., Strategies to compensate for undesired gritty sensations in foods, Food Quality and Preference 2020, 81, 103842

Fuhrmann, P.L., Sala, G., Stieger, M., Scholten, E., Effect of oil droplet inhomogeneity at different length scales on mechanical and sensory properties of emulsion-filled gels: Length scale matters Food Hydrocolloids 2020, 101, 105462

Fuhrmann, P.L., Aguayo-Mendoza, M., Jansen, B., Stieger, M., Scholten, E. Characterization of friction behavior of intact solid foods and food boli. Food Hydocolloids 2020, 100, 105441.

van Eck, A., Wijne, C., Fogliano, V., Stieger, M., Scholten, E. Shape up! How shape, size and addition of condiments influence eating behavior of vegetables. Food and Function 2020, 141, 105903.

Rudge, R.E.D., Scholten, E., Dijksman, J. Natural and Induced Roughness Determine Frictional Regimes in Hydrogel Pairs, Tribology International 2020, 141, 105903

Research area

Food systems are often mixtures of ingredients and should therefore be considered as complex mixtures or complex composites. Foods consist often of a combination of different food structures, like gels, foams and emulsions. The food structures can be created by mixing water, fat/oil and air with food ingredients like proteins, polysaccharides and other bio-based molecules. The interactions between these ingredients determine the assembly of these ingredients (collection of ingredients) into larger building blocks and determine which food structures (emulsion, foam, gel) can be created. These structures then determine the textural features of foods, such as the fracture properties, melting, spreading behavior, elestricity, etc. These textural features will change during food consumption, and at the end determine at the end the sensory perception of those products. To provide knowledge to design new food applications, an understanding of complex composites is therefore desirable.

Main Questions:
- How can we control textural parameters of food by controllng building blocks at different length scales (including protein, fats, and polysaccharides)
- How can we measure textural parameters of food, especially those related to complex textural and sensorial attributes. (including rheology, tribology, XRD, and microscopic techniques)


Sociale media
  Elke Scholten op Google Scholar Citations
  Elke Scholten op ResearchGate
  Elke Scholten op Linkedin



Overall topics:

  • Network formation in gels (both aqueous and oil continuous) 
  • Rheological and fracture behavior of gels (both aqueous and oil continuous)   
  • Composite foods
  • Lubrication / Tribology
  • Fat reduction  
  • Gastronomy


Involved in courses:

  • Food Ingredient Functionality (FCH-30306)
  • Advanced Molecular Gastronomy (FPH-31306)
  • Product and Process Design (FQD-60312)


Available MSc and BSc projects

  • Oil structuring with proteins (Annika Feichtinger)
  • Fat and sugar reduction in ice cream (Qi Wang and Xiangyu Liu)
  • Tribology of nutritional beverages (Lei Ji)
  • Tribology of "soft" systems (Raisa Rudge)
  • Crystallization of fat (Naomi Arita)
  • Development of vegan cheese (Zhihong Lyu)
  • Structure of Halloumi cheese (Bo Yuan)
  • Effect of milk composition on properties of cheese (Huifang Cai)


For additional projects within the Food Physics Group see the web-site or contact Elke Scholten ( for more information

  • FCH-30306 - Food Ingredient Functionality
  • FCH-35303 - Food Ingredient Functionality DL
  • FCH-37403 - Laboratory Class II - Food Ingredient Technofunctionality
  • FPH-31306 - Advanced Molecular Gastronomy
  • FPH-35803 - Advanced Molecular Gastronomy - From ingredients to food texture
  • FPH-35903 - Advanced Molecular Gastronomy - Physical and chemical aspects of flavour pairing
  • FPH-70224 - MSc Internship Physics and Physical Chemistry of Foods
  • FPH-70424 - MSc Internship Physics and Physical Chemistry of Foods
  • FPH-79224 - MSc Research Practice Physics and Physical Chemistry of Foods
  • FPH-79324 - MSc Research Practice Physics and Physical Chemistry of Foods
  • FPH-80436 - MSc Thesis Physics and Physical Chemistry of Foods
Caption Text
  • mail
  • chat
  • print