Zoek medewerkers/organisaties MIS Naduthodi MSc
Naam MIS Naduthodi MSc

OrganisatieDepartement Agrotechnologie en Voedingswetenschappen
OrganisatieeenheidBio Process Engineering
Telefoon+31 317 483 117
Mobiel+31 6 16673096
Telefoon secretariaat
Telefoon 2
Notitie voor telefonist
Notitie door telefonist
BezoekadresStippeneng 4
Stippeneng 4
Reguliere werkdagen
Ma Di Wo Do Vr


After completing his bachelor degree in Biotechnology and Biochemical Engineering from Sree Chitra thirunal College of Engineering, Kerala University, India, Mihris moved to Wageningen for pursuing his MSc degree in Cellular and Molecular Biotechnology. During the course of his MSc degree he developed a fascination on potential of genetically modified microbes and the techniques used for developing mutants. This led to his MSc thesis in the Bacterial genetics lab in Microbiology department where he worked on Metabolic engineering of thermophilic bacteria Bacillus smithii. Later, on completion of his masters, he was appointed as a PhD student in the same department under the supervision of Prof. John van der Oost and Dr. Maria Barbosa. His present research focus on developing CRISPR-Cas based genome editing tools for microalgae.




The exploitation of non-renewable energy sources has impacted the environment and consequent problems are rising in an alarming rate. The concept of biofuels emerged as an eco-friendly and renewable alternative to the crude oil based fuels. Over the years, the research focussed on improving the sustainability of the established biofuel production platform. The “third generation” biofuel implementing microalgae for production was a clear improvement over its predecessors. However, the “first generation” and “second generation” biofuels account for 99% of the biofuels produced globally. The prime reason for this is the limited technology available to exploit the complete potential of microalgal strains. Certain oleaginous microalgal strains such as Nannochloropsis oceanica, has the potential to accumulate oils up to 60% of its dry weight under defined conditions. Nevertheless, the oil accumulation occurs with reduced growth rate which is detrimental from the industrial perspective. Lack of an efficient genome editing tool was the prime reason that hindered the development of industrial relevant microalgal mutants that could uplift the production of most sustainable “third generation” biofuels.

Since its inception in 2013 as a genome editing tool, CRISPR-Cas systems has revolutionized the genetic engineering in wide range of organisms. However, the application of  this tool in the microalgal species were stalled by the hypothesised toxic effect of Cas9 in these organisms. In 2016, this dilemma was overcome with limited success when the plasmid based Cas9 expression in the host strains were replaced by transformation of Cas9 protein along with targeting guide RNAs [Ribonucleoprotein; RNP]. Even though the RNP based approach was a milestone in application of CRISPR in microalgae, the unfeasibility in implementing CRISPRi with this strategy was a drawback.

We focus on exploiting the complete potential of existing CRISPR-Cas systems to develop efficient genome editing tools for microalgae N. oceanica. These tools will be later implemented for metabolic engineering of this species for TAG (Triacyl glycerol) and PUFA (Poly unsaturated fatty acids) production.

Caption Text
  • mail
  • chat
  • print